Image findings of a rare case of gestational breast cancer diagnosed in a lactating woman with Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography

INTRODUCTION

The incidence of pregnancy-associated breast cancer (for the pre-natal to post-partum periods) is approximately 15-35 per 100,000 deliveries, with fewer breast cancer cases diagnosed during pregnancy than during the first post-partum year.[1] Women with a genetic predisposition to breast cancer may be overrepresented among pregnant women with cancer, although the available evidence is limited.[3] There are no previous reports of F-18 fluorodeoxyglucose-positron emission tomography/computed tomography (FDG PET/CT) in a lactating woman with breast cancer.

CASE REPORT

A 32-year-old female patient who had delivered a child 2 months back and was breast feeding presented with a lump in the right breast. She underwent an excision biopsy of the breast lump, which showed invasive ductal carcinoma. As a part of the evaluation, she was subjected to a PET/CT scan, which was performed on a hybrid scanner after injection of approximately 10 mCi of F-18 FDG. Maximum intensity projection image [Figure 1, right down] showed diffusely increased FDG uptake in both the breasts due to lactation, and intense FDG uptake was noted in the right breast mass lesion. CT, fused PET/CT and PET transaxial image [Figure 1, right and left] at the level of the breast showed increased FDG uptake in the bilateral breast parenchyma and multiple nodes. As the PET/CT scan confirmed metastatic involvement of multiple nodes, the patient underwent chemotherapy.

DISCUSSION

Breast cancer is one of the most common cancers in non-pregnant and pregnant women.[4] Up to 20% of breast cancers in women under the age of 30 years are pregnancy-associated, but fewer than 5% of breast cancers diagnosed in women under the age of 50 years are detected during pregnancy or in the post-partum period.[5] FDG PET/CT in breast cancer imaging has an adjunctive role in the detection of locoregional recurrence or distant metastases in locally advanced breast cancer.
Increased FDG uptake in lactation is thought to be the result of uptake of plasma glucose for milk production and increased activity of the ductal muscles. Hicks et al. described that most of the patients who were breast-feeding an infant before PET scanning had diffuse and symmetric uptake in the breasts. Asymmetric breast uptake in lactating women and in a patient with hydatid cyst has been described. To the best of our knowledge, this is the first case report of breast cancer with lactating breast uptake detected on FDG PET scan. FDG uptake pattern has been useful in predicting the benign or malignant nature of nodes. In our case, as the PET study revealed multiple nodal metastasis, the patient was subjected to chemotherapy. Our case thus illustrates that FDG PET/CT is an important imaging modality for the detection and accurate staging and restaging of breast cancer and to decide upon appropriate treatment even in a lactating woman.

REFERENCES